目前最快的n皇后
2016-01-01 22:22:59 -0500
/*
** 目前最快的N皇后递归解决方法
** N Queens Problem
** 试探-回溯算法,递归实现
*/
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
// sum用来记录皇后放置成功的不同布局数;upperlim用来标记所有列都已经放置好了皇后。
long sum = 0, upperlim = 1;
// 试探算法从最右边的列开始。
void test(long row, long ld, long rd)
{
if (row != upperlim)
{
// row,ld,rd进行“或”运算,求得所有可以放置皇后的列,对应位为0,
// 然后再取反后“与”上全1的数,来求得当前所有可以放置皇后的位置,对应列改为1
// 也就是求取当前哪些列可以放置皇后
long pos = upperlim & ~(row | ld | rd);
while (pos) // 0 -- 皇后没有地方可放,回溯
{
// 拷贝pos最右边为1的bit,其余bit置0
// 也就是取得可以放皇后的最右边的列
long p = pos & -pos;
// 将pos最右边为1的bit清零
// 也就是为获取下一次的最右可用列使用做准备,
// 程序将来会回溯到这个位置继续试探
pos -= p;
// row + p,将当前列置1,表示记录这次皇后放置的列。
// (ld + p) << 1,标记当前皇后左边相邻的列不允许下一个皇后放置。
// (ld + p) >> 1,标记当前皇后右边相邻的列不允许下一个皇后放置。
// 此处的移位操作实际上是记录对角线上的限制,只是因为问题都化归
// 到一行网格上来解决,所以表示为列的限制就可以了。显然,随着移位
// 在每次选择列之前进行,原来N×N网格中某个已放置的皇后针对其对角线
// 上产生的限制都被记录下来了
test(row + p, (ld + p) << 1, (rd + p) >> 1);
}
}
else
{
// row的所有位都为1,即找到了一个成功的布局,回溯
sum++;
}
}
int main(int argc, char *argv[])
{
time_t tm;
int n = 15;
if (argc != 1)
n = atoi(argv[1]);
tm = time(0);
// 因为整型数的限制,最大只能32位,
// 如果想处理N大于32的皇后问题,需要
// 用bitset数据结构进行存储
if ((n < 1) || (n > 32))
{
printf(" 只能计算1-32之间\n");
exit(-1);
}
printf("%d 皇后\n", n);
// N个皇后只需N位存储,N列中某列有皇后则对应bit置1。
upperlim = (upperlim << n) - 1;
test(0, 0, 0);
printf("共有%ld种排列, 计算时间%d秒 \n", sum, (int) (time(0) - tm));
return 0;
}
Back to home
Subscribe |
Register |
Login
| N